4 resultados para Lipopeptide

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C12-Orn-Orn-Trp-Trp-NH2 against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C12-OOWW-NH2 at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2) , and the lipopeptide C(12) -Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12) -Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofilms [1], displaying potential for use in the prevention of medical device-related infections [2]. Analysis of fluorescence micrographs, after staining with calcein AM and DAPI, shows the likely mode of cytotoxic action of cationic antimicrobial peptides and lipopeptides are via directmembrane disruption in eukaryotic cells. Selectivity is towards cidal action against prokaryotic cells, whose membranes are anionic in composition, such as those of bacteria, rather than for neutral zwitterionic membranes of eukaryotic cells. Membrane selectivity is determined by a multitude of physical parameters, particularly charge and hydrophobicity. The charge of the antimicrobial determines the extent of the initial electrostatic interactions with both prokaryotic and eukaryotic membranes, with a larger cationic charge favoring antimicrobial action. Tailoring of these properties is likely to be the key in successfully transferring antimicrobial peptides from laboratory experiments into clinical practice as safe pharmaceutical formulations.